Skip to main content
ServiceXRG
  • Your Challenges
    • Overview
    • Self-Assessment
  • Our Solution
    • Overview
    • Achieving Service Success
    • Our Process
    • Service Success Framework
    • Membership
  • Why ServiceXRG
    • Overview
    • Capabilities
    • Clients
    • Team
  • Resources
    • Resource Library
    • Blog
  • Member Login
ServiceXRG
  • Member Login
  • Self-Assessment
  • Let’s Talk
  • Your Challenges
    • Overview
    • Self-Assessment
  • Our Solution
    • Overview
    • Achieving Service Success
    • Our Process
    • Service Success Framework
    • Membership
  • Why ServiceXRG
    • Overview
    • Capabilities
    • Clients
    • Team
  • Resources
    • Resource Library
    • Blog

Blog : Generative AI Applications for Customer Support

  • Previous Post
  • All Posts

Generative AI Applications for Customer Support

By Tom Sweeny March 6, 2023

Generative AI technology can create useful types of new content in audio, graphical, and text formats. With the right instructions and knowledge inputs it can write code, produce music, and author narratives.  So why not apply the same basic premise to have generative AI produce things that we need to support customers.

For Customer Support in particular, there are many potential applications of this technology, however there are three that stand out as “killer” use cases:

The first is providing customers with the contextually relevant answer to their specific needs.

The second is detecting customer risk and developing alerts and a customized remediation plan to mitigate this risk.

The third is delivering intelligent proactive support by creating customized support journeys and plans to indicate the type and intensity of support needed to help customers before problems occur.

Each of these three applications will rely on generative AI to recognize the specific context of customers’ needs and develop an action or answer specifically crafted to meet the unique circumstances.

Scaling Human Intelligence

We can deliver these support use cases today, but it requires human intelligence to understand and synthesize a customer appropriate response.  Human intelligence works, but it does not scale.

Imagine an artificial intelligence emulating human intelligence to understand needs and context with the ability to formulate a “personal” response to each customer.

AI enabled technologies can be trained to perform these functions and taught to generate useful content.  AI can perform at massive scale.

Tech-Touch and Personal Engagement

The detection of customer needs and generation of a responses – the answer, a risk mitigation plan, or proactive customer journey – may be delivered through fully digital means directly to customers or as a roadmap prepared for human delivery by a Support rep, Technical Account Manager, or CSM.

As AI determines the need and generates a response it can also decide how best to deliver a response to a customer.  Not every interaction will require the direct involvement of humans so many support events will be fully digital.  Human resources will be reserved for the most important interactions.

Beyond Traditional Search

The top application of support technology today is search.  Search is the foundation for internal knowledge access, customer-facing self-help applications, and overall federated search across multiple knowledge repositories.

Good search sitting atop good knowledge repositories can return effective results.  But most search applications provide lists of links to curated knowledge.  The list of documents is dynamically generated, but the underlying knowledge presented is not.

The advantage of generative AI over today’s “typical” search-based applications is that each response will provide the answer based on the specific context of the question asked and any other information known about the user (e.g. product used, environment, previous questions asked, etc.).

From Risk Detection to Risk Mitigation

Customer support is needed when something goes wrong, or when a customer needs “how to” assistance.  Reactive support interactions often indicate situations where customers can lose data, diminish productivity or worse, put people or equipment at risk.

The opportunity to mitigate risk begins by interpreting signals that portend imminent issues.  The frequency of issues reported, the language used by customers, and even telemetry received from products provide useful clues that an issue may occur or escalate to become more serious.

It is impossible for any one individual to detect risk from the patterns in the data received from customers, but AI enabled tools can.

Generative AI can process the signals to create proactive notifications and may be able to create a plan for preemptive risk mitigation.

Intelligent Proactive Support

The ideal scenario for Support is to prevent issues before customers need help.  Proactive support is the zenith of support efficiency.  Too often, however, Support teams are consumed by reacting to customer needs and have little time to engage customers in an intelligent proactive manner.

Getting proactive begins the  moment you land a new customer.  You need to consider how best to help customers adopt new products, apply them successfully, and take action to minimize obstacles that may inhibit their ability to realize value.

Proactive Support Begins With A Plan

As with risk mitigation described above, generative AI can help support teams be proactive by defining recommended actions to help the customer on their journey to adopt and apply products or by avoiding circumstances that can cause future issues.

An AI generated plan can identify the stage of the customer journey and offer prescribed support, training, or adoption activities that will help the customer the most.  Generative AI may also suggest the best approach to help a customer upgrade out of date technology.

Recommendations formulated by generative AI can be sent directly to customers through digital channels or delivered as guided assistance from Support reps, Technical Account Managers, or CSMs.

Start Planning Now

It is never too early to consider how you can apply the next generation of technology to support customers.  Building a truly effective support application takes time and planning.  Here are a few things to consider:

  • Define your top use cases for Generative AI – what problems will you solve?
  • Prepare a vast repository of knowledge to allow AI to understand your business and customers’ needs.
  • Keep your knowledge repository fresh – Consider how inputs from product generated telemetry, logs, new case records, community discussions, and other customer or product generated signals can be used.

Generative AI is not a silver bullet but will be a promising foundation for building intelligent, scalable, and proactive support delivery infrastructure for the future.

Want to chat about this – drop me a note.

Self-Service Deflection

Maximizing the Use and Effectiveness of Self-Help and Automation

When self-service is successful it will deflect new support cases from assisted support channels and will free Support staff to focus on high-value customers and high-impact initiatives.

In this whitepaper we will:
  • Present the state of Self-Service for customer support
  • Define a method to reliably measure self-service deflection
  • Offer design considerations to enhance self-service use and effectiveness
Download Now

Build the Right Service Capabilities with the Framework for Service Success

The ServiceXRG Framework™ sets the standard for the core capabilities that successful service organizations use to achieve better business outcomes with service.

  • Previous Post
  • All Posts

How Effective Is Your Self-Service and Automation Strategy?

Take the Assessment

Subscribe for even more resources and the latest in your inbox.

"*" indicates required fields

Name*

By clicking the "Submit" button you accept and agree to be bound by the Terms of Use and Privacy Policy.

This field is for validation purposes and should be left unchanged.

Related Posts

  • 2.15.23 Read Time: 2 Mins

    What is the primary expected outcome of your service organization?

    Service teams are shifting their focus to the attainment of strategic outcomes.

  • 2.10.23 Read Time: 5 Mins

    Differences between Customer Support and Customer Success

    As we embrace Customer Success it is imperative that we have a shared understanding about what Customer Success is and is not.

  • 2.2.23 Read Time: 5 Mins

    ChatGPT: Impressions and Implications for Technical Support and Customer Success

    This article provides initial impressions and experiences with ChatGPT and offer thoughts about the potential implications for Technical Support and Customer Success.

ServiceXRG

© Service Excellence Research Group, LLC 2023. All Rights Reserved.

Website by Imagebox

Contact Info
  • Email: info@servicexrg.com
  • Phone: 800-475-0089
Quick Links
  • Your Challenges
    • Overview
    • Self-Assessment (Old)
  • Our Solution
    • Overview
    • Achieving Service Success
    • Our Process
    • Service Success Framework
    • Membership
  • Why ServiceXRG
    • Overview
    • Capabilities
    • Clients
    • Team
  • Resources
  • Let’s Talk
Social Media
  • LinkedIn
  • Newsletter
  • Twitter